

Code No.: 234 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. II Year I-Semester Supplementary Examinations, May-2017

Design and Analysis of Algorithms

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. Define time complexity.
- 2. What is the best case for creation of heap?
- 3. When we will get worst case in quick sort?
- 4. Difference between greedy method and dynamic programming.
- 5. Which data structure is used in BFS and DFS?
- 6. What is the time complexity of travelling sales man problem?
- 7. What is backtracking?
- 8. Define branch and bound in terms of E- node.
- 9. What is deterministic algorithm?
- 10. What do you mean by intractable problems?

Part-B $(5 \times 10 = 50 \text{ Marks})$

	Develop UNION and FIND algorithms for disjoint sets using weighing and collapsing rules respectively.	[5]
b)	Explain about asymptotic notation.	[5]
b)	Use Quick sort algorithm to sort the list A, L, G, O, R, I, T, H, M in alphabetical order. Explain the Knapsack problem. Find an optimal solution to the Knapsack instance $n = 7, m = 15, (p_1, p_2, p_3,, p_7) = (10,5,15,7,6,18,3)$ and $(w_1, w_2, w_3,, w_7) = (2, 3, 5, 7, 1, 4, 1)$.	[5] [5]
13. a)	Using algorithm OBST compute W(i, j), R(i, j) and C(i, j), $0 \le i < j \le 4$, for the identifier set (a ₁ a ₂ , a _j , a ₄) = (end, goto, print, stop) with P(1) =1/20, P(2) =1/5, P(3) =1/10, P(4) =1/20. Q(0) = 1/5, Q(1) = 1/10, Q(2) = 1/5, Q(3) = 1/20, Q(4) = 1/20. Using the R(i,j)s construct the optimal binary search tree.	[7]
b)	Explain DFS with an example.	[3]
	Write an algorithm for n – queens problem.	[4]
b)	Draw the portion of the state space tree generated by LCBB (Least Cost Branch and Bound) for the knapsack instance: n=5, $(P_1,P_2,\ldots,P_5) = (10,15,6,8,4)$, $(w_1 w_2,\ldots,w_5) = (4,6,3,4,2)$ and M =12.	[6]
15. a)	Explain Clique Decision problem.	[5]
	State cook's theorem and explain its importance.	[5]
16. a)	Define little o notation. Give an example.	[5]
b)	Use Greedy strategy, find the solution for optimal storage on tapes problem instance $n = 3$, $(l_1, l_2, l_3) = (5, 10, 3)$.	[5]
17. Answer any two of the following:		[5]
	Explain the principal of optimality.	[5] [5]
) Explain about live node, E-node and dead node.	[5]
c) Describe P and NP class of problems.	r. 1